SYSTÈMES DE DEUX ÉQUATIONS LINÉAIRES À DEUX INCONNUES

I) INTRODUCTION

En mathématiques, on est régulièrement amené à manipuler plusieurs inconnues simultanément.

Exemple : Un cirque a des chameaux et des dromadaires. On compte 5 têtes et 8 bosses. Combien y a-t-il de chameaux ?

Rédaction:

Appelons x le nombre de chameaux $(x \in \mathbb{N})$ et y le nombre de dromadaires $(y \in \mathbb{N})$

Il y a 5 têtes : Il y a 8 bosses :

On résout le système (S) :

S =

Remarques:

- 2x + y = 8 est une équation dite « linéaire à deux inconnues » (4; 0) et (2; 4) sont 2 couples solutions de cette équation. (2; 1) n'est pas un couple solution.
- Le système ci-dessus n'a qu'un seul couple solution, mais chacune des deux équations qui le composent en a une infinité :

Ex : $x + y = 5 \Leftrightarrow y = 5 - x$ donc quand x « décrit » \mathbb{R} , tous les couples sont solutions de l'équation x + y = 5.

II) SYSTÈME DE 2 ÉQUATIONS À 2 INCONNUES

Résoudre un système « 2×2 », c'est trouver tous les couples qui sont solutions simultanément des deux équations.

Ex : Résoudre
$$(S_1)$$
 : $\begin{cases} x-2 \ y=1 \\ 3 \ x+6 \ y=3 \end{cases}$

1) Résolution par substitution :

$$(S_1):\begin{cases} x-2 \ y=1 \\ 3 \ x+6 \ y=3 \end{cases}$$

On exprime une des inconnues en fonction de l'autre on la remplace par l'expression trouvée.

2) Résolution par combinaison linéaire :

$$(S_1): \begin{cases} x-2y=1 & (L_1) \\ 3x+6y=3 & (L_2) \end{cases}$$

On combine les deux équations de façon à faire disparaître une des inconnues

Remarques:

- En dernière ligne, n'oubliez ni les $\{ \}$, ni les $\{ \}$ ni les $\{ \}$ $\{ \}$
- Vérifier le couple solution trouvé!

p206: 110, 111, 112, 113, 114

p207: 121, 122, 123, 124

p210: 142, 143